Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures

نویسندگان

  • Hang Zhang
  • Chengyun Hua
  • Ding Ding
  • Austin J. Minnich
چکیده

Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for t...

متن کامل

Analytical interpretation of nondiffusive phonon transport in thermoreflectance thermal conductivity measurements

We derive an analytical solution to the Boltzmann transport equation (BTE) to relate nondiffusive thermal conductivity measurements by thermoreflectance techniques to the bulk thermal conductivity accumulation function, which quantifies cumulative contributions to thermal conductivity from different mean free path energy carriers (here, phonons). Our solution incorporates two experimentally def...

متن کامل

Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.

Non-metallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events-their mean free paths. Due to the breadth of the phonon mean free path spectrum, nanostructuring materials can reduce thermal conductivity from bulk by scattering long mean free path phonons, wher...

متن کامل

Acoustic Phonon Spectrum Modification in Nanostructures and Its Effect on Lattice Thermal Conductivity

The feature size of conventional electronic devices has already fallen below the acoustic phonon mean free path (MFP) in silicon, which is estimated to be 50 nm – 300 nm at room temperature. The lateral dimensions of nanowires and the size of quantum dots in quantum dot superlattices (QDS) fabricated by different self-assembly techniques are approaching the wavelength of a dominant phonon mode,...

متن کامل

Computational study of the thermal conductivity in defective carbon nanostructures

We use nonequilibrium molecular dynamics simulations to study the adverse role of defects including isotopic impurities on the thermal conductivity of carbon nanotubes, graphene, and graphene nanoribbons. We find that even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to one half by decreasing the phonon mean-free path. An even larger ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015